Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis
Step 1. Download Adobe Digital Editions Both PC and Mac users will need to download Adobe Digital Editions to access their eBook. You can download Adobe Digital Editions at Adobe's website here.
Step 2. Register an Adobe ID if you do not already have one. (This step is optional, but allows you to open the file on multiple devices) Visit account.Adobe.com to register your Adobe account.
Step 3: Authorize Adobe Digital Editions using your Adobe ID. In Adobe Digital Editions, go to the Help menu. Choose “Authorize Computer.”
Step 4: Open your file with Adobe Digital Editions. Once you’ve linked your Adobe Digital Editions with your Adobe ID, you should be able to access your eBook on any device which supports Adobe Digital Editions and is authorized with your ID. If your eBook does not open in Adobe Digital Editions upon download, please contact customer service
Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis provides expert techniques for extracting hydrogen from water using transition metal oxides as catalysts. The basic processes of electrochemistry and photocatalysis for hydrogen production are described along with photocatalytic reactions and semiconductor photocatalysts, particularly metal oxides.
This in-depth guide illustrates the corresponding crystal structure vs. electronic structure and optical properties vs. light absorption of transition metal oxides. Impurity and doped photocatalysts, integrated organic and inorganic systems, surface and interface chemistry, and nanostructure and morphology in photocatalysis applications are all addressed. This comprehensive resource introduces soft x-ray absorption (XAS), soft x-ray emission spectroscopy (XES), and resonant inelastic soft x-ray scattering (RIXS), followed by a description of instrumentation.
COVERAGE INCLUDES:
* Hydrogen generation: electrochemistry and photoelectrolysis * Photocatalytic reactions, oxidation, and reduction * Transition metal oxides * Crystal structure and electronic structure * Optical properties and light absorption * Impurity, dopants, and defects * Surface and morphology * Soft x-ray spectroscopy and electronic structure